B: Raspberry Pi Java Client

Prerequisites:

® |nstalling the Java Runtime Environment
® |nstalling Ignition
Installing the following MQTT Modules
© MQTT Distributor
= v3.1.0 or greater if using Ignition 7.9.X
© MQTT Engine
® v3.1.0 or greater if using Ignition 7.9.X
® Downloading the Sparkplug Sample Code onto a development system

Overview:

Sparkplug is an open source project developed by Cirrus Link Solutions which shows how devices or projects can be enabled to communicate with MQTT
Engine and Ignition. This example will show how data can be published via MQTT from an emulated device running on a development machine. In
addition, it will show how devices or projects can be controlled by writing to tags in Ignition. It will also show the caveats associated with establishing
/ending an MQTT session and ensuring that the tag values in Ignition are valid.

Raspberry Pi Java Client:
This tutorial assumes:

Ignition is running and in active trial mode or using a purchased license.

MQTT Distributor is installed and running, using the default configuration, and in active trial mode or using a purchased license.
MQTT Engine is installed and running, using the default configuration, and in active trial mode or using a purchased license.
You have a Raspberry Pi 2 Model B running Raspbian Linux.

You have a Pibrella I/0O board.

With the Sparkplug sample code downloaded onto your development machine, change into the directory and build the code. In order for this to work you
must have a Java Development Environment and Maven installed. Also, this example assumes the MQTT Server running is MQTT Distributor running
with it's default configuration. If you are using a different MQTT Server, edit the following file to reflect your MQTT Server configuration:

® sparkplug_b/raspberry_pi_examples/java/src/main/java/com/cirruslink/example/SparkplugRaspberryPiExample.java
Since the IP address of the machine running the MQTT server (MQTT Distributor) is dependent on your network setup, the serverUrl must be changed in

this file. Also, if not using MQTT Distributor you may need to modify the username and password. For simplicity this example does not use or support
TLS over MQTT without modifications.

With the above steps completed, run the following commands to build the application:

cd sparkplug_b/raspberry_pi_examples/java/
mvn clean install

Now with the application built it must be transferred to the Raspberry Pi. This can be done at the command line with scp:

scp target/sparkplug_b_raspberry _pi_example-1.1.3-SNAPSHOT .jar pi@[RASP_PI_IP_ADDRESS]:/tmp/

Example if the Raspberry Pi IP address is 192.168.1.100:
scp target/sparkplug_b_raspberry_pi_example-1.1.3-SNAPSHOT .jar pi@192.168.1.100:/tmp/

Default Raspbian password is: raspberry

With the application now on the Raspberry Pi, it can be run as follows:

java -jar /tmp/sparkplug_b_raspberry_pi_example-1.1.3-SNAPSHOT .jar

At this point, the application will start, connect to the MQTT server, publish a Edge Node Birth Certificate, publish a Device Birth Certificate, and begin
periodically reporting random data values to Ignition via MQTT Engine. This can be verified via Ignition Designer. Using a Web Browser, browse to the
Ignition Gateway on your Ignition Gateway. [f it is running on your development machine, that is: http://localhost:8088. You should see this:

https://docs.chariot.io/display/CLD/Java+Runtime+Environment
https://docs.chariot.io/display/CLD/Ignition
https://docs.chariot.io/display/CLD/MQTT+Modules
https://docs.chariot.io/display/CLD/Sparkplug+Sample+Code
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://pibrella.com/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/download.cgi
mailto:pi@192.168.1.100
http://localhost:8088

oo e Ignition-Wess-MBP - Ignition « x e

< C' | ® localhost:8088/main/web/home;jsessionid=vyyjgzb: 14necziw7?0 ig

P USERMANUAL SUPPORT

SignIn

A HOME STATUS & CONFIGURE

o . .
T al Vel"slon 1:59:17 We're glad you're test driving our software. Have fun.

Welcome to the Ignition Gateway

Congratulations, Ignition is installed and running!
* Whether you need an OPC-UA server, a SQL datalogger, an HMI, or a full-blown SCADA or MES solution, Ignition can handle it. Here are a
few common steps to help get you started:
Login to the configuration section.
The default username and password are: admin / password
Change the password or configure your own authentication profile in the security > Authentication section
Connectto adevice.
Connectivity is what Ignition is all about. Connect to a PLC on your network using the internal OPC-UA server, or a 3rd party OPC
server. Don't have a PLC handy? No problem, you can skip this step or use one of the simulator drivers.
Connectto a database.

Database connectivity is at the heart of Ignition's most powerful features, like Transaction Groups and SQLTags Historian. If you have
a SQL database, you can greatly increase Ignition's capabilities by adding a connection to it. No database? You can come back to this
step later or skip it entirely.

Launch the Ignition DesignertZ.
This is where the magic happens. Create a project and add windows and transaction groups. Besides the usual status and control
functionality, take advantage of advanced charting, tables and reporting capabilities.

Launch a client. Or two. Or twenty.

Web-launched clients can be launched anywhere on your network from the panel below. With Ignition, you don't have licensing
restrictions to limit you.

Near the upper right corner, click '‘Launch Designer'. This will open the following window after downloading the .jnlp file and executing it. Note the default
username/password is admin/password. Type those into the appropriate fields and click ‘'Login’.

Igniﬁon‘c/ designer

by inductive automation

Username

Password

inducti
Copyright © 2003-2016 Inductive Automation All rights reserved. avtomation

This will bring you to a new Window where you can select an Ignition Project or create a new one. Create a new project by giving it a name and clicking
'Create New Project'.

@ Open/Create Project

Ignition‘./

by inductive automation

Create New New Project Setup

7 New Project Project Name |Test |i.'_r

Project Title | |

Open Recent Authentication Profile |defau|t EJ|
Default Database | EJ|
Default Tags Provider |defau|t EJ|
Project Template |B|ank |EJ|
Description

Create New Project J

@ inductive
automation

Now you should be in designer. In the left hand side of the main window is a ‘'Tag Browser' window. In it, expand 'All Providers -> MQTT Engine -> Edge
Nodes -> Sparkplug B Devices -> Java Raspberry Pi Example -> Pibrella’. You should see the following:

[BON } Test - Ignition-Wess-MBP - Ignition Designer

File Edit View Project Component Alignment Shape Tools Help

B% ,albdEBGLG O-b9 #aERL%QQQ LAAS|SbMEIThdE~ § =i
[Project Browser g g X OPC Browser o /X m
[=I Getting Started —
e Global E [<Default> e O
= E Project
4 Ignition OPC-UA Server (o]
Tag Browser o /& X \ A
ABE - 5 -¥Pe 4 -
=+) MQTT Engine -
(3 Data Types v
= S Edge Nodes g
5 Sparkplug B Devices ~
E@Java Raspberry Pi Example B
45 Node Control s New Main Window
% Next Server O Boolean| 2
% Rebirth [} Boolean
“ Reboot O Boolean
% Scan Rate ms 1,000 Int4
&+ (2] Node Info
=) Pibrella
2] Device Info
= @ Inputs
®a [} Boolean
O Boolean
O Boolean
Wd O ‘ Boolean
O Boolean
O Boolean
O Boolean
] Boolean
[O Boolean
& " button count 0 Int4
&+ "% button count setpoint 10 Int4
5" buzzer O Boolean
=+) Properties
=8 & IP Addresses
&) eth0
% 1Pv4 192.168.1.117 String
@ IPV6 fe80:0:0:0:ch07:b721:... String
“lo
Fw 1PV4 127.0.0.1 String
% IPVe 0:0:0:0:0:0:0:1 String
#+ % Board Type Model2B_Revl String
#+ % Hardware BCM2709 String
& % 0S FW Build faf071dd4885c5acla8... String
onfig Change Count 1 Int4
[+ "% Up Time ms 57,004 Int8|-
[Property Editor (=L
L= % - €1 I
) Welcome X
i |2 | =% 136 7 910 mb |

You will see that MQTT Engine saw a new device attach to the MQTT Server and publish a Birth Certificate. As a result, MQTT Engine created the
Ignition Tags shown above. These are also dynamically updated as the values change. You can also write to the outputs after you Enable Device Writes
from Ignition. This can be done by putting designer into read/write mode. Do so by clicking this button in the menu to enable read/write mode:

Then you can change any of the values on the outputs here:

https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition
https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition

Jlr— e d Boolean
-+ 1 Outputs
- LEDs

o 5 green [l Boolean

4 & red O Boolean

bR vellow] Boolean

- x e | Boolean

+ i f O Boolean

bR g] Boolean

H % h [l Boolean

+- " button [l Boolean

When you click on of the outputs, you should see the output on the Pibrella board change to reflect the state. Also, if any inputs change on the Pibrella
you should see them update in the Tag Browser in the Ignition Designer. If you are not seeing the output and input values update to reflect the change you
have made, make sure MQTT Engine is not configured to block outbound device tag writes as described here.

https://docs.chariot.io/display/CLD/MQTT+Engine+Configuration

	B: Raspberry Pi Java Client

