
Getting Started: AWS Injector Quick Start

Prerequisites

Ignition with Google Cloud Injector Module installed
Review the documentation for installation details. Cirrus Link Module Installation

Ignition Designer installed
Review the Inductive Automation documentation for against the Ignition gateway Launching Designer

An existing AWS account with an active Kinesis Stream and/or DynamoDB Database.
Documentation on creating a Kinesis Stream can be found .here

If using a Firehose stream, its source must be "Direct PUT or other sources"
Documentation on creating a DynamoDB Database table can be found .here

DynamoDB Database tables ideally should be created with the following settings:
Primary partition key: UUID (String)
Primary sort key: GROUP_EDGE_ID (String)

Summary

This tutorial will provide step-by-step instructions for the following:

Configuring the AWS Injector Module to connect to a Kinesis Stream
Configuring the AWS Injector Module to connect to a DynamoDB Database
Publishing live Tag data and events to the connected Kinesis Stream and DynamoDB Database.

Upon completion of this module you will have an Ignition Gateway connected and publishing live Tag data to AWS.

Architecture

Tutorial

Step 1: Configure the AWS Injector Modules

Once you have Ignition and the AWS Injector Module installed and running we can setup the configuration to connect to AWS.

Review the for more details on each tab AWS Injector Module configuration guide

https://docs.chariot.io/display/CLD80/Cirrus+Link+Module+Installation
https://www.docs.inductiveautomation.com/docs/8.1/launchers-and-workstation/designer-launcher
http://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SampleData.CreateTables.html
https://docs.chariot.io/display/CLD80/AWI%3A+Configuration

Navigate to the AWS Injector Module configuration section from the left side bar in the Ignition Gateway.

Create an AWS Kinesis Stream Setting

From the Kinesis tab, click on the "Create new AWS Kinesis Stream Setting..." link to bring up the following configuration form:

For this tutorial, we will be adding new and Settings. You may optionally choose to skip one of the Kinesis Stream DynamoDB Database
following two sections if you do not wish to setup a Kinesis Stream endpoint or a DynamoDB Database.

Set the following parameters:

Setting Name
This can be any unique identifier. For this tutorial we will use "TestSetting".

AWS Access Key
This is the Access Key used to authenticate to your AWS account

Password
This is the Secret Key used to authenticate to your AWS account

Region
This is the AWS Region that your Kinesis Stream is in

Stream Name

This is the name of the Kinesis Stream that you wish to connect to. This is shown below in the AWS Kinesis Streams console.

Click on "Create New Kinesis Stream Setting" to finish creating the new configuration setting.

Create an AWS DynamoDB Database Setting

From the DynamoDB tab, click on the "Create new DynamoDB Setting..." link to bring up the following configuration form:

Set the following parameters:

Setting Name
This can be any unique identifier. For this tutorial we will use "TestSetting".
Note that this only has to be unique among DynamoDB Settings so we can configure with the same used for the Kinesis Stream.

AWS Access Key
This is the Access Key used to authenticate to your AWS account

Password
This is the Secret Key used to authenticate to your AWS account

Region
This is the AWS Region that your DynamoDB Database is in

Table Name

This is the name of the DynamoDB Database Table to connect to. This is shown below in the AWS DynamoDB console.

Click on "Create New DynamoDB Setting" to finish creating the new configuration setting.

Now the AWS Injector module is connected to a Kinesis Stream and/or a DynamoDB Database, we have to determine if there are are changes needed to
the Tag Agent tab to be able to push data.

If you already have Ignition tags defined, for example from the Ignition OPC UA Server, then depending on the depth of your tag tree you may need to
configure the Sparkplug Settings.

Review the which Cloud Injector Tag Agents and Tag Trees document describes how Cloud Injector Agent configurations interact with Ignition
tag trees to push messages and tag change events to the cloud service. It explains how tags get identified to be pushed as well as what specific
'topics' will be included with the messages. It also goes over some example configurations to show how the system will behave in different
scenarios.

https://docs.chariot.io/display/CLD80/Cloud+Injector+Tag+Agents+and+Tag+Trees

Once the Tag Agent is setup as needed, you can jump to . Step 3: Publishing data

If you do not have Ignition tags defined we will do that in the next step with a tag tree depth that requires no additional Sparkplug settings.

Step 2: Create tags to be published in Designer

When the AWS Injector module is installed in Ignition, an Edge Node folder is automatically created in the 'default' Ignition tag provider.

Create a tree structure under this folder as shown below with some memory tags - this folder structure creates the same hierarchy that is described in the
Sparkplug B specification of Group ID, Edge ID, and Device ID.

Refer to the Ignition and documentation for assistance in configuring Ignition tags Tag Browser Creating Tags

https://www.docs.inductiveautomation.com/docs/8.1/platform/tags/tag-browser
https://www.docs.inductiveautomation.com/docs/8.1/platform/tags/creating-tags

Step 3: Publishing data

When the AWS Injector module is installed in Ignition, an AWS Injector tag provider is automatically created. This folder will contain both information tags
about the module's version and state, as well as control tags for refreshing the module and Tag Agents.

Make sure that the Ignition Designer has read/write communications turned on by selecting the Project/Comm Read/Write button highlighted in the image
below.

To refresh the default Tag Agent, open the folder "AWS Injector Control" and click on the Refresh Boolean. When this happens, the Tag Agent will scan
the "Edge Nodes" folder and find the new Memory Tags that we have created, construct messages representing those tags with their current values and
send the messages to the Kinesis Stream and/or DynamoDB Database that we have configured.

Sending tag data to the Kinesis Stream

The AWS Injector Tag Agent will push two JSON messages to the Kinesis Stream. The format of these messages closely follows the Sparkplug B
Specification's payload structure.

The first message represents the Edge Node and will contain the following:

The Sparkplug elements: Namespace, Group ID, Edge Node ID. They will be grouped under "topic".
A "timestamp" for when the payload was constructed.
A "bdSeq" sequence number to track the "session" of the Tag Agent.
Any Edge Node tags defined in the "Tutorial Edge Node" folder (in our example we have none).

It will look something like this:

First Payload

{
 "topic": {
 "namespace": "spBv1.0",
 "groupId": "Tutorial Group",
 "edgeNodeId": "Tutorial Edge Node"
 },
 "payload": {
 "timestamp": 1504739061495,
 "metrics": [
 {

Review the for additional assistance on setting the project communication mode Inductive Automation Designer documentation

The Boolean tag will not change to true. This is really a one-shot and as a result, the tag will not change to true.

https://www.docs.inductiveautomation.com/docs/8.1/ignition-modules/vision/vision-designer-interface

 "name": "bdSeq",
 "timestamp": 1504739061495,
 "dataType": "Int64",
 "value": 0
 }
],
 "seq": 0
 }
}

The second message represents the Device and will contain the following:

The Sparkplug elements: Namespace, Group ID, Edge Node ID, Device ID. They will be grouped under "topic".
A "timestamp" for when the payload was constructed.
A "bdSeq" sequence number to track the "session" of the Tag Agent.
Any Device tags defined in the "Tutorial Device" folder. It will look something like this:

It will look something like this:

Second Payload

{
 "topic": {
 "namespace": "spBv1.0",
 "groupId": "Tutorial Group",
 "edgeNodeId": "Tutorial Edge Node",
 "deviceId": "Tutorial Device"
 },
 "payload": {
 "timestamp": 1504739061501,
 "metrics": [
 {
 "name": "Boolean001",
 "timestamp": 1504739061546,
 "dataType": "Boolean",
 "properties": {
 "Quality": {
 "type": "Int32",
 "value": 192
 }
 },
 "value": true
 },
 {
 "name": "String001",
 "timestamp": 1504739061546,
 "dataType": "String",
 "properties": {
 "Quality": {
 "type": "Int32",
 "value": 192
 }
 },
 "value": "onetwothree"
 },
 {
 "name": "Integer001",
 "timestamp": 1504739061546,
 "dataType": "Int32",
 "properties": {
 "Quality": {
 "type": "Int32",
 "value": 192
 }
 },
 "value": 123
 },
 {

 "name": "Float001",
 "timestamp": 1504739061546,
 "dataType": "Float",
 "properties": {
 "Quality": {
 "type": "Int32",
 "value": 192
 }
 },
 "value": 1.23
 }
],
 "seq": 1
 }
}

Sending tag data to the DynamoDB Table

The AWS Injector Tag Agent will insert two items into the DynamoDB Database table. The columns of these items represent different elements of the
Sparkplug B Specification's payload structure.

The first item represents the Edge Node and will contain the following:

EDGE_NODE_ID
The Sparkplug Edge Node ID.

GROUP_ID
The Sparkplug Group ID.

GROUP_EDGE_ID
A combination of the Group ID and Edge Node ID, (used as the Primary Partition Key).

TIMESTAMP
A "timestamp" for when the payload was constructed

TOPIC
The Sparkplug topic.

bdSeq
A sequence number to track the "session" of the Tag Agent.

Any Edge Node tags defined in the "Tutorial Edge Node" folder (in our example we have none).

It will look something like this:

The second item represents the Device and will contain the following:

DEVICE_ID
The Sparkplug Device ID.

EDGE_NODE_ID
The Sparkplug Edge Node ID.

GROUP_ID
The Sparkplug Group ID.

GROUP_EDGE_ID
A combination of the Group ID and Edge Node ID, (used as the Primary Partition Key).

TIMESTAMP
A "timestamp" for when the payload was constructed

TOPIC
The Sparkplug topic.

Any Device tags defined in the "Tutorial Device" folder
Boolean001
Float001
Integer001
String001

It will look something like this:

Step 4: Use Ignition Designer to Publish Tag Data (Live Tag Values Changes)

Now we can change the values of the new Memory Tags and generate messages that contain the Tag change events. Click on the value of the
"Boolean001" Memory Tag to change it's value.

Sending Live Tag Data to the Kinesis Stream

The following message will be constructed to represent this Tag change event and pushed to the Kinesis Stream:

Change Event Payload

{
 "topic": {
 "namespace": "spBv1.0",
 "groupId": "Tutorial Group",
 "edgeNodeId": "Tutorial Edge Node",
 "deviceId": "Tutorial Device"
 },
 "payload": {
 "timestamp": 1504740884529,
 "metrics": [
 {
 "name": "Boolean001",
 "timestamp": 1504740883526,
 "dataType": "Boolean",
 "value": false
 }
],
 "seq": 2
 }
}

Sending Live Tag Data to the DynamoDB Database

The following item will be constructed to represent this Tag change event and inserted into the DynamoDB Database table

Step 5: AWS Applications

It is beyond the scope of this tutorial to show how to design an application in AWS to handle the data flowing into the Kinesis Stream and/or DynamoDB
Database. For additional information on developing applications to consume this data see .https://aws.amazon.com/

Additional Resources

Inductive Automation's Ignition download with free trial
Current Ignition Release

Cirrus Link Solutions Modules for Ignition
 Ignition Strategic Partner Modules

Support questions
Check out the Cirrus Link Forum: https://forum.cirrus-link.com/
Contact support: support@cirrus-link.com

Sales questions
Email: sales@cirrus-link.com
Phone: +1 (844) 924-7787

 About Cirrus Link
https://www.cirrus-link.com/about-us/

https://aws.amazon.com/
https://inductiveautomation.com/downloads/ignition
https://inductiveautomation.com/downloads/third-party-modules/8
https://inductiveautomation.com/downloads/third-party-modules/
https://inductiveautomation.com/downloads/third-party-modules/8
https://forum.cirrus-link.com/
mailto:support@cirrus-link.com
mailto:sales@cirrus-link.com
https://www.cirrus-link.com/about-us/

	Getting Started: AWS Injector Quick Start

