B: Raspberry Pi Python Client

Prerequisites:

® |nstalling the Java Runtime Environment
® |[nstalling Ignition
® |Installing the following MQTT Modules
© MQTT Distributor
® v3.1.0 or greater if using Ignition 7.9.X
© MQTT Engine
® v3.1.0 or greater if using Ignition 7.9.X
® Downloading the Sparkplug Sample Code onto a development system

Overview:

Sparkplug is an open source project developed by Cirrus Link Solutions which shows how devices or projects can be enabled to communicate with MQTT
Engine and Ignition. This example will show how data can be published via MQTT from an emulated device running on a development machine. In
addition, it will show how devices or projects can be controlled by writing to tags in Ignition. It will also show the caveats associated with establishing
/ending an MQTT session and ensuring that the tag values in Ignition are valid.

Raspberry Pi Python Client:
This tutorial assumes:

Ignition is running and in active trial mode or using a purchased license.

MQTT Distributor is installed and running, using the default configuration, and in active trial mode or using a purchased license.
MQTT Engine is installed and running, using the default configuration, and in active trial mode or using a purchased license.
You have a Raspberry Pi 2 Model B running Raspbian Linux.

You have a Pibrella 1/0 board.

In order for this example to run you must have Python and pip installed on your Raspberry Pi. These should be installed by default.

Use pip to install the protobuf and paho-mgqtt dependencies with the following commands:

sudo pip install protobuf
sudo pip install paho-mgtt

Also, let's set up some directories to run in:

nkdir ~/dev
nkdir ~/dev/client_lib

With the Sparkplug sample code downloaded onto your development machine, copy the following files to the Raspberry Pi:

sparkplug_b/raspberry_pi_examples/python/example.py
client_libraries/python/*

NOTE: The following instructions copy the files to the directories we created above.
For Windows the WinSCP application (https://winscp.net/eng/download.php) can be installed to connect and transfer files to the Raspberry Pi:

For Linux/Mac, the following commands can be used to copy each file:

scp sparkpl ug_b/ raspberry_pi _exanpl es/ pyt hon/ exanpl e. py pi @ RASP_PI _| P_ADDRESS] : ~/ dev/
scp client_libraries/python/* pi @RASP_PI _| P_ADDRESS]: ~/dev/client_lib/

Example if the Raspberry Pi IP address is 192.168.1.100 (also the default password for the 'pi' user in Raspbian is ‘raspberry"):

scp sparkpl ug_b/ raspberry_pi _exanpl es/ pyt hon/ raspberry_pi . py pi @92.168. 1. 100:/t np/
scp client_libraries/python/* pi @92.168.1.100: ~/dev/client_lib/

This example assumes the MQTT Server running is MQTT Distributor running with it's default configuration. Since the IP address of the machine running
the MQTT server (MQTT Distributor) is dependent on your network setup, the serverUrl must be changed in the main application file:

raspberry_pi.py

Also, if not using MQTT Distributor you may need to modify the username and password. For simplicity this example does not use or support TLS over
MQTT without modifications.

https://docs.chariot.io/display/CLD/Java+Runtime+Environment
https://docs.chariot.io/display/CLD/Ignition
https://docs.chariot.io/display/CLD/MQTT+Modules
https://docs.chariot.io/display/CLD/Sparkplug+Sample+Code
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://pibrella.com/
https://www.python.org/downloads/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/protobuf
https://pypi.python.org/pypi/paho-mqtt/1.1
https://winscp.net/eng/download.php

With the above steps completed, run the application with the following commands:

cd ~/dev/
pyt hon exanpl e. py

At this point, the application will start, connect to the MQTT server, publish a Edge Node Birth Certificate, publish a Device Birth Certificate, and begin
periodically reporting random data values to Ignition via MQTT Engine. This can be verified via Ignition Designer. Using a Web Browser, browse to the
Ignition Gateway on your Ignition Gateway. If it is running on your development machine, that is: http://localhost:8088. You should see this:

©® © ® 7] ignition-Wess-MBP - Ignition x > e

< C @ localt in/web/home;j ionid=vyyjgzb: V4necziw7?0 pxd

Ignition. . USER MANUAL SUPPORT

Signin

I g p iuti 0 n - Launch Designer {

i STATUS £ CONFIGURE

. . . .
Trlal ve FSION 1:59:17 We're glad you're test driving our software. Have fun. Activate Ignition

. Welcome to the Ignition Gateway

hide this panel

Congratulations, Ignition is installed and running!

Whether you need an OPC-UA server, a SQL datalogger, an HMI, or a full-blown SCADA or MES solution, Ignition can handle it. Here are a

few common steps to help get you started:

i Login to the configuration section.
The default username and password are: admin / password
Change the password or configure your own authentication profile in the security > authentication section

£l connect toadevice.
Connectivity is what Ignition is all about. Connect to a PLC on your network using the internal OPC-UA server, or a 3rd party OPC
server. Don't have a PLC handy? No problem, you can skip this step or use one of the simulator drivers.

[Ell connect to a database.
Database connectivity is at the heart of Ignition's most powerful features, like Transaction Groups and SQLTags Historian. If you have
a SQL database, you can greatly increase Ignition's capabilities by adding a connection to it. No database? You can come back to this
step later or skip it entirely.

[EJLaunch the 1gnition Designerts.
This is where the magic happens. Create a project and add windows and transaction groups. Besides the usual status and control
functionality, take advantage of advanced charting, tables and reporting capabilities.

[Launch a client. Or two. Or twenty.

Web-launched clients can be launched anywhere on your network from the panel below. With Ignition, you don't have licensing
restrictions to limit you.

http://localhost:8088

Near the upper right corner, click 'Launch Designer'. This will open the following window after downloading the .jnlp file and executing it. Note the default
username/password is admin/password. Type those into the appropriate fields and click ‘Login'.

Igniﬁon‘c/ designer

by inductive automation

Username

g license agreement Password

inductive
Copyright © 2003-2016 Inductive Automation All rights reserved. autamation

This will bring you to a new Window where you can select an Ignition Project or create a new one. Create a new project by giving it a name and clicking
'Create New Project'.

o Open/Create Project

Ignition‘./

by inductive automation

Create New New Project Setup

7 New Project Project Name |Test |\.,,

Project Title | |

Open Recent Authentication Profile |defau|t EJ|
Default Database | |EJ|
Default Tags Provider |defau|t EJ|
Project Template |B|ank EJ|
Description

Create New Project]

{_E} inductive
autemation

Now you should be in designer. In the left hand side of the main window is a ‘Tag Browser' window. In it, expand 'All Providers -> MQTT Engine -> Edge
Nodes -> Sparkplug B Devices -> Python Raspberry Pi -> Pibrella’. You should see the following

[BON } Test - Ignition-Wess-MBP - Ignition Designer
File Edit View Project Component Alignment Shape Tools Help
BN ralbIRBGLEG O-b0 #aERs%QQQ LAAS|SbMEIThdE~ § =i
[Project Browser g g X OPC Browser o /X m
[=I Getting Started —
e Global E [<Default> e O
= E Project
¥~ Ignition OPC-UA Server (o]
Tag Browser (=L A
ABE - 5 -¥Pe 4 -
+ 1] System -
E] Client v
= All Providers 54
[default [;
rj SECSGEM
= %3] MQTT Engine s New Main Window E
(3 Data Types /
—+ 3] Edge Nodes
- 3 [Sparkplug B Devices
(] Java Raspberry Pi Example
=~ 5] Python Raspberry Pi
=+ i) Node Control
"% Next Server O Boolean
% Rebirth O Boolean
% Reboot O Boolean
2] Node Info
=+) Parameters
® hw_revision Revision : a21041 String
" hw_serial Serial : 00000000d1d... String
hw_version Hardware : BCM2709 String
“© sw_version Linux raspberrypi 4.4.1... String -|
=+ Pibrella
2] Device Info
= @ Inputs
W a O Boolean
‘ O Boolean
O Boolean
O Boolean
O Boolean
O Boolean
O Boolean
O Boolean
O Boolean
O Boolean
O Boolean
O Boolean
O Boolean—
- " buzzer_success O Boolean
& (] Engine Metrics
=RV n 1 =
[Property Editor a 7 X
§ = el % - K1 T I
) Welcome X
i |2 | =% 216 7 910 mb |

You will see that MQTT Engine saw a new device attach to the MQTT Server and publish a Birth Certificate. As a result, MQTT Engine created the
Ignition Tags shown above. These are also dynamically updated as the values change. You can also write to the outputs after you Enable Device Writes
from Ignition. This can be done by putting designer into read/write mode. Do so by clicking this button in the menu to enable read/write mode:

Then you can change any of the values on the outputs here:

https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition
https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition

I——-’E.' Qutputs
- i LEDs
a:f— green E Boolean
+ T red [Boolean
LR vellow [Boolean
+ e [Boolean
LR f [Boolean
L& g O Boolean
L ®n [Boolean
TR = I, =] [J R

When you click on of the outputs, you should see the output on the Pibrella board change to reflect the state. Also, if any inputs change on the Pibrella
you should see them update in the Tag Browser in the Ignition Designer. If you are not seeing the output and input values update to reflect the change you
have made, make sure MQTT Engine is not configured to block outbound device tag writes as described here.

https://docs.chariot.io/display/CLD/MQTT+Engine+Configuration

	B: Raspberry Pi Python Client

