B: Example Node-RED Client

Prerequisites:

® |nstalling the Java Runtime Environment
® |nstalling Ignition
Installing the following MQTT Modules
© MQTT Distributor
= v3.1.0 or greater if using Ignition 7.9.X
© MQTT Engine
® v3.1.0 or greater if using Ignition 7.9.X
® Downloading the Sparkplug Sample Code onto a development system

Overview:

Sparkplug is an open source project developed by Cirrus Link Solutions which shows how devices or projects can be enabled to communicate with MQTT
Engine and Ignition. This example will show how data can be published via MQTT from an emulated device running on a development machine. In
addition, it will show how devices or projects can be controlled by writing to tags in Ignition. It will also show the caveats associated with establishing
/ending an MQTT session and ensuring that the tag values in Ignition are valid.

Example JavaScript Client:
This tutorial assumes:

Ignition is running and in active trial mode or using a purchased license.

MQTT Distributor is installed and running, using the default configuration, and in active trial mode or using a purchased license.
MQTT Engine is installed and running, using the default configuration, and in active trial mode or using a purchased license.
The Node.js JavaScript runtime is installed.

The Node-RED tool is installed.

With the standalone Sparkplug example downloaded onto your development machine, change into the directory:
sparkplug_b/stand_alone_examples/nodered

Before running the application we need to install the node-red-contrib-sparkplug library using the Node Package Manager (npm). Issue the following
command:

npm install -g node-red-contrib-sparkplug
Now start the Node-RED application with the following command:
node-red -v

Now you can open a browser to http://localhost:1880/ to view the Node-RED visual tool.

https://docs.chariot.io/display/CLD/Java+Runtime+Environment
https://docs.chariot.io/display/CLD/Ignition
https://docs.chariot.io/display/CLD/MQTT+Modules
https://docs.chariot.io/display/CLD/Sparkplug+Sample+Code
https://nodejs.org/en/
http://nodered.org/
https://www.npmjs.com/package/node-red-contrib-sparkplug
http://localhost:1880/

lgnition Gati

= Node-RED +

a Flow 1 info debug

~ input

inject
catch

status
link
matt
http.

websocket

tep
udp

serial

~ output

debug
link
maqtt
http response
websocket
tcp

udp

We need to install the node-red-contrib-sparkplug library module into Node-RED. We can do this using the "Manage palette" option in the upper right
dropdown menu.

https://www.npmjs.com/package/node-red-contrib-sparkplug

® ® lgnition Gateway E Node-RED -
€ c wBe &+ &4 @ =
Deploy ~ —
a Flow 1 info
~ input
inject
catch Search flows
status Configuration nodes
Flows
link
Subflows
matt
Manage palette
http.
Keyboard shortcuts
websocket
Node-RED website
o v0.15.1
udp
serial
v output
debug
link
mqtt

http response

websocket

tcp

udp

localhost: 1880/#

Once "Manage palette" has been selected a new menu will appear on the left. Click the "Install" tab and search for "sparkplug”.

ece Ignition Gateway x j"m \"\ +
€ | (D | localhost:1880/# ¢ Q search wa + # =
Node-RED
Manage palette Flow 1 + info debug
Done

Nodes Install

sort: | 8-z | recent]
Q sparkplug 1788 X

& node-red-contrib-sparkplug &
A Sparkplug node for Node-RED
% 200 M 1monthago instal

You will see the node-red-contrib-sparkplug node appear in the search results. Click the install button for this node to install it into Node-RED. Click the
Done button once it has successfully installed.

In the lower left, under the function section, there is a now a Sparkplug node. Click and drag the Sparkplug node into the flow diagram. This node will
represent a Sparkplug Edge Node. It will establish and maintain a connect with the MQTT Server, publish NBIRTH messages, handle any received NCMD
messages, publish DDATA and DBIRTH messages from connected device nodes, as well as send and received DCMD messages to the device nodes.

Double click the node to bring up the screen to edit the sparkplug node's properties.

5
Neode-RED »® \ +

ece lgnition Gateway xf
localhost:1880/# @ | Q search TTa 4 &

Q filter nodes Flow 1 Edit sparkplug node info debug
~ function Cancel Node
£ . i Type sparkplug
IT‘ function I,TI [} Be628ac.0adb3
J— @ Server tcp:/flocalhost a oA
N o
'T‘ template |]_| » Properties
.i\im}. @ Port 1883
- e 7 A Sparkplug edge node that connects to an
4 G by & Username admin MQTT broker and publishes birth and data
S messages for the edge node and any input
" comment | & Password | - devices.
s L)
Q hittp request () % Client ID NodeREDSimpleEdgeNode
|L tcp request |l|
% req i % Group ID Sparkplug Devices
|J_;\ switch '.IJ:l
Tl 7 % Edge Node | Node-RED Edge Node
& h Ioy
T S '
p % Version Sparkplug B j
IT\ range)
F s % Enable
> spit () Cache False j
A - i
e join) % Publish
P 2 Death True j
T Sy
fo. html
(& json 0
o xml ol
d rbe 0
|J_E\ sparkplug |]J:|
allv

Enter the MQTT Server URL and port number to connect to along with the username and password (the default for MQTT Distributor is admin
/changeme). The remaining properties can be left as the defaults. Click "Ok".

Now click and drag a function node onto the flow diagram to the left of the sparkplug node.

lgnition Gateway x E Node-RED -~

€ localhost:1880/# c

Q Flow 1 + info debug
~ function Node
Type function
function
1D eB658fba.82614
template » Properties
delay
J ° A function block where you can write code to
do more interesting things.
trigger
The message is passed in as a JavaScript
comment object called msg .
http request ° By convention it will have a msg.payload
sparkplug property containing the body of the message.
e uest
o Logging and Error Handling
switch To log any information, or report an error, the
following functions are available:
change
g ¢ node.log("Log")
range * node.warn("Warning")
* node.error("Error")
E The Catch node can also be used to handle
- errors. To invoke a Catch node, pass msg as
oin
L a second argument to node.error :
asv
node.error("Error",msg)
htmi
Sending messages
ison The function can either return the messages it
wants to pass on to the next nodes in the
xml flow, or can call node.send(messages) .
rbe It can return/send:
+ a single message object - passed to
sparkplug

nodes connected to the first output
* an arrav of messaae obiects - passed to

Use a text editor of your choice to copy the contents of the following JavaScript file to the clipboard:
sparkplug_b/stand_alone_examples/nodered/emulated-device.js

then double click the function node in the flow diagram in Node-RED to bring up the the editor for the function node properties. This node will be emulating
a device by generating random data points, and sending "DBIRTH", "DDEATH", and "DDATA" messages to the Sparkplug Edge Node as well as respond
to "command" and "rebirth" messages sent from the Sparkplug Edge Node . Give the function node a name and paste javascript (that was copied to the
clipboard) into the "Function" editor, overwriting what was there by default. Click "Ok".

ece

lgnition Gateway

*/

) localhost:1880/#

Node-RED

x‘\\q.

¢ Q search

Q Flow 1 Edit function node info debug
~ function Cancel Node
£ | Type function
) i % Name Emulated Device | - 1o iialaid
& R L
'T‘ template |]_| » Properties
i # Function
|J'\ delay |J'| - ¥
[B A 134 A function block where you can write code to
&S 135~ outboundPayload = { R i
0 trigger) 136 "timestam) new Date().getTime(do more interesting things.
T J — 1 137 "metrics” : outboundMetric
p 138 « b The message is passed in as a JavaScript
\ comment | 139 object called msg .
: 140~ return {
£ i 141 "topic" : getTopic("DDATA"), i B
aQ hitp request Q 142 "payload" : outboundPayload By convention it will have a msg.payload
)) 143] property containing the body of the message.
0 toprequest 144 _ ‘ _
L y 145~ } else if (msg.topic === "rebirth") { Logging and Error Handling
) 146 console.log(deviceld + " received 'rebirt]
[m] switch () 147~ return { To log any information, or report an error, the
) 148 "topic” : getTopic("DBIRTH"), following functions are available:
I i 149 payload" : getBirthPayload()
o change () 150 - 3
L J el i * node.log("Log")
0 range u) 152~ } else if (msg.topic === "timestamp"){ * node.warn("Warning")
L T 153 console.log(deviceld + " received 'timesti * node.error("Error")
- 1 154 ~ return {
8] split 0 155 "topic" : getTopic("DDATA"),
T T 156 “payload” : getDataPayload(msg) The Catcﬁ node can alsc be used to handle
L 157 « }i errors. To invoke a Catch node, pass msg as
a Join] i (o omme "
T T 158~ } else if (msg.topic === "death"){ .
)) 159 console.log(deviceld + " received 'timest: a second argument to [EodeFerror):
g =0 ») 160 ~ return {
L y 161 "topic" : getTopic("DDEATH"), node.error("Error",msg)
1 162 "payload"” : getDeathPaylecad(msg)
o html 163 - Y
164 - } Sending messages
b 165
& json 0 166 return null; The function can either return the messages it
wants to pass on to the next nodes in the
9 xml Y N flow, or ¢an call node.send(messages) .
3¢ Outputs 1 -
& rbe 0 It can return/send:
” See the Info tab for help writing functions. * a single message object - passed to
(= \u]
EEZCEDE nodes connected to the first output
+ an arrav of messaae obiects - passed to

We now need a way of triggering a DDATA publish even from the device. Click and drag an input node to the flow diagram, to the left of the Emulated
Device node. Double click the inject node to edit it's properties. Set the topic property to "timestamp" and leave the rest as defaults. This will allow us the
ability to manually trigger a publish of device data.

-
Neode-RED »® \ +

ece Ignition Gateway xj

localhost:1880/# @ Q search

Node-RED
a Flow 1 Edit inject node info debug
v input Cancel Node
I L Type inject
\ et 1)
|) N = Payload - timestamp D bage32bc.f058e
L
catch timestamp -l » Properties
- § = Tepic timestamp |
‘ status m) h P i
ressing the button on the left side of the node
‘ s L Emu C' Repeat none j allows a message on a topic to be injected into
&A™ the flow.
o [Inject once at start?
‘ matt () The payload defaults to the current time in
Y ® Name Name m\ll}sscs smcg 1970,7bul can also be set to
‘ http Q varieus other javascript types.
‘ websocket IJT'I Note: "interval between times" and "at a specific time" will use cron. The repeat function allows the payload to be
i § See Info box for details. sent on the required schedule.
o
“ ']-' The Inject once at start option actually waits a
short interval before firing to give other nedes a
‘ wr chance to instantiate properly.
‘ serial The Flow and Global options allow one to inject
a flow or global context value.
v output Note: "Interval between times" and "at a
specific time" uses cron. This means that 20
|E minutes will be at the next hour, 20 minutes past
. § and 40 minutes past - not in 20 minutes time. If
¢\ link | you want every 20 minutes from now - use the
. “interval® option.
| magtt |
L Note: all string input is escaped. To add a
'?hm response | carriage return to a string you should use a
- following function.
I%\ websocket |
P
IT‘ tcp |
A
O |

Now we can wire the nodes together. Connect the output of the timestamp node to the input of the Emulated Device node. Connect the output of the
Emulated Device node to the input of the Sparkplug Edge Node. Finally Connect the output of the Sparkplug Edge Node to the input of the Emultated
Device node. This creates a way for the device to both publish messages and receive messages from the Sparkplug Edge Node.

Ignition Gateway = Node-RED +

€ localhost:1880/# o

Q Flow 1 info debug
~ input
inject
Q
catch timestamp:timestamp
status

link
(<]

Emulated Device
matt

http.
websocket

tep

udp

sparkplug

serial

~ output

debug

link

maqtt

http response

websocket

tcp

udp

Now it's time to click Deploy in the top right corner of the Node-RED tool. You can monitor the command line window where you started Node-RED and
see log messages indicating that the Node-RED Edge Node's client has connected, subscribed to control and command topics, published a NBIRTH
message, and emitted a "rebirth" event to the Emulated Device. The Emulated Device then published a DBIRTH message with a payload containing all
data points/values that the device will report.

This can be verified via Ignition Designer. Using a Web Browser, browse to the Ignition Gateway on your Ignition Gateway. If it is running on your
development machine, that is: http://localhost:8088. You should see this:

http://localhost:8088/

ece Ignition Gateway %\ +

4 | () | localhost:8088/mainjweb/home?3 E1| ¢ Q search Tt B ¥+ @

USERMANUAL SUPPORT

Sign Out

Launch Designer
& CONFIGURE

. . . .
Trlal Verslon 1:56:43 We're glad you're test driving our software. Have fun. Activate Ignition

. Welcome to the Ignition Gateway

Congratulations, Ignition is installed and running!
Whether you need an OPC-UA server, a SQL datalogger, an HMI, or a full-blown SCADA or MES solution, Ignition can handle it. Here are a
few common steps to help get you started:
"Login totheconfiguration section.

The default username and password are: admin / password

Change the password or configure your own authentication profile in the Secur > Authentication section

Edconnecttoa device.

Connectivity is what Ignition is all about. Connect to a PLC on your network using the internal OPC-UA server, or a 3rd party OPC
server. Don't have a PLC handy? No problem, you can skip this step or use one of the simulator drivers.

Elconnect toa aatabase.
Database connectivity is at the heart of Ignition's most powerful features, like Transaction Groups and SQLTags Historian. If you have
a SQL database, you can greatly increase Ignition's capabilities by adding a connection to it. No database? You can come back to this
step later or skip it entirely.

EJLaunch the 1gnition Designercs.
This is where the magic happens. Create a project and add windows and transaction groups. Besides the usual status and control
functionality, take advantage of advanced charting, tables and reporting capabilities.

&l taunch a client. Or two. Or twenty.

Web-launched clients can be launched anywhere on your network from the panel below. With Ignition, you don't have licensing
restrictions to limit you.

. Launch Projects (2]

No Projects

Near the upper right corner, click 'Launch Designer'. This will open the following window after downloading the .jnlp file and executing it. Note the default
username/password is admin/password. Type those into the appropriate fields and click 'Login'.

Igniﬁon‘:/ designer

by inductive automation

to the accep : : Username
and c« S
accompanyin Password

| Login |

inductive
Copyright © 2003-2016 Inductive Automation All rights reserved. @ autrmation

This will bring you to a new Window where you can select an Ignition Project or create a new one. Create a new project by giving it a name and clicking
'‘Create New Project'.

@ Open/Create Project

Ignition‘./

by inductive automation

Create New New Project Setup

| New Project Project Name | |@

Project Title | |

Open Recent Authentication Profile |defau|t EJ|
A Test Default Database | |EJ|
Default Tags Provider |defau|t EJ|
Project Template | Blank EJ|

Description

Create New Project |

@ inductive
automation

Now you should be in designer. In the left hand side of the main window is a ‘'Tag Browser' window. In it, expand 'All Providers -> MQTT Engine -> Edge
Nodes -> Sparkplug Devices -> Node-RED Edge Node -> Emulated Device'. You should see the following

[JoN) Test - Ignition-Tutorial-MBP - Ignition Designer
File Edit Yiew Project Component Alignment Shape Tools Help

BEraAlbORB%G O-P0 £6HESSQQQ LAdNS|ebs|E =T
Project Browser o R X lz‘
e Clakal [<] = Getting Started =
E Project E 5
A Properties o
@Scripts [+] fay
Tag Browser o B X =
ABE - b -¥YMé $4 2
Tag Yalue Data Type 2
01 Tags A
1 ysterm .
£ client g New Mair] E
= S All Providers 2
(71 default
(] SECSGEM
=~ 5] MOQTT Engine
@ Data Types
-5 Edge Modes
&) Eparkplug Devices
-5 Mode-RED Edge Mode
5 Ernulated Device
] Device Info
-5 Inputs
] [Boalean
1 0 Int4
2 1.23 Floatd
=~ 5 Outputs
] =] Boalean
®1 0 Intd
2 1.23 Floatd
=~ Properties
"—%/ hw_warsian Ermulated Hardware String
5 ow_wersion wl1.0.0 String
- my_boalean =] Boalean
-y double 0.01 Float@
- my_float 0.09 Float4
B myint 6 Intd
- mry_lang 429,496,729,400 Int&
- (2] Mode Contral
B+ (£ Mode Info
[(2] Engine Metrics
[]—f:':] Message Diagnostics
[« T [+]
() Welcome X
[y | -5 252 f 310 mb | 8

You will see that MQTT Engine saw a new device attach to the MQTT Server and publish a Birth Certificate. As a result, MQTT Engine created the
Ignition Tags shown above. These are also dynamically updated as the values change. You can also write to the outputs after you Enable Device Writes
from Ignition. This can be done by putting designer into read/write mode.

Do so by clicking this button in the menu to enable read/write mode:

Component Align

|| B[-1

Then you can change any of the Tag values in the Outputs folder here:

https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition
https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition

+- () Device Info

l—f:_. Inputs

+ oo %]

L1 0

b 2 1.23

—- 1) Outputs

+ oo %]

L1 0
L& 2 1.23

- 0 Properties

- % rry_boolean W

+
I
+
I

You should see the output value change as well as one of the inputs. In the Emulated Device sample code the outputs are virtually tied to the inputs. So,
when modifying an output value, this causes an MQTT message to be sent from MQTT Engine, to the virtual device, which catches the message and
virtually writes the values, then publishes a MQTT message back to MQTT Engine where the two values are updated.

Note: If you are not seeing the output and input values update to reflect the change you have made, make sure MQTT Engine is not configured to block
outbound device tag writes as described here.

https://docs.chariot.io/display/CLD/MQTT+Engine+Configuration

	B: Example Node-RED Client

