B: Example C Client

Prerequisites:

® |nstalling the Java Runtime Environment
® |nstalling Ignition
Installing the following MQTT Modules
© MQTT Distributor
= v3.1.0 or greater if using Ignition 7.9.X
© MQTT Engine
® v3.1.0 or greater if using Ignition 7.9.X
® Downloading the Sparkplug Sample Code onto a development system

Overview:

Sparkplug is an open source project developed by Cirrus Link Solutions which shows how devices or projects can be enabled to communicate with MQTT
Engine and Ignition. This example will show how data can be published via MQTT from an emulated device running on a development machine. In
addition, it will show how devices or projects can be controlled by writing to tags in Ignition. It will also show the caveats associated with establishing
/ending an MQTT session and ensuring that the tag values in Ignition are valid.

Example C Client:
This tutorial assumes:

® [gnition is running and in active trial mode or using a purchased license.
® MQTT Distributor is installed and running, using the default configuration, and in active trial mode or using a purchased license.
® MQTT Engine is installed and running, using the default configuration, and in active trial mode or using a purchased license.

With the standalone Sparkplug example downloaded onto your development machine, change into the directory and build the application. In order for this
to work you must have a C compiler installed for your development system. Also, this example assumes the MQTT Server running is MQTT Distributor
running with it's default configuration. If you are using a different MQTT Server, edit the following file to reflect your MQTT Server configuration:

® sparkplug_b/stand_alone_examples/c/example.c

The most likely candidates for change are the host, username, and password. For simplicity this example does not use or support TLS over MQTT without
modifications.

Mosaquitto is the only dependency of the sample application. It must be installed on your development machine before building the sample application.

® Mosqutto
O Can be downloaded here. Included in the link are instructions for various platforms. Make sure in the end of installation the
development libraries are available on your build path.
© This is how one would do it in Ubuntu Linux 16.04
= Enter the following commands:

sudo apt-get update
sudo apt-get install build-essential libssl-dev libc-ares-dev uuid-dev
mkdir ~/dev
cd ~/dev
wget http://mosquitto.org/files/source/mosquitto-1.4.10.tar.gz
tar zxvf mosquitto-1.4.10.tar.gz
cd mosquitto-1.4.10
make
sudo make install
sudo Idconfig

With the above steps completed, run the following commands to get the sparkplug library and sample application:
cd ~/dev

git clone https://github.com/Cirrus-Link/Sparkplug.git

cd Sparkplug/client_libraries/c/

make

cd ~/dev/Sparkplug/sparkplug_b/stand_alone_examples/c/udt_example/

At this point the example.c file should be edited to properly reflect your MQTT server URL, port, credentials, etc. Finally, build the application:
make

https://docs.chariot.io/display/CLD/Java+Runtime+Environment
https://docs.chariot.io/display/CLD/Ignition
https://docs.chariot.io/display/CLD/MQTT+Modules
https://docs.chariot.io/display/CLD/Sparkplug+Sample+Code
http://mosquitto.org/download/
http://mosquitto.org/files/source/mosquitto-1.4.8.tar.gz
https://github.com/Cirrus-Link/Sparkplug.git

Now simply start the application with the following command:
Jexample

At this point, the application will start, connect to the MQTT server, publish a Edge Node Birth Certificate, publish a Device Birth Certificate, and begin
periodically reporting random data values to Ignition via MQTT Engine. This can be verified via Ignition Designer. Using a Web Browser, browse to the
Ignition Gateway on your Ignition Gateway. [f it is running on your development machine, that is: http://localhost:8088. You should see this:

€ localhost:8088/main/web/home?27 EJ €& Q maven download > A $ AD v =

Ignition! 4

by inductive automation

Home Status Configure Launch Designer -ﬁ/

Welcome to the Ignition Gateway

Congratulations, Ignition is installed and running! i
Whether you need an OPC-UA server, a SQL datalogger, an HMI, or a full-blown SCADA or MES solution, Ignition can handle it. Here are a few common steps to help get you started:
Login to the configuration section.

The default username and password are: admin / password
Change the password or configure your own authentication profile in the Security > Authentication section.

Connect to a device,

Connectivity is what Ignition is all about. Connect to a PLC on your network using the internal OPC-UA server, or a 3rd party OPC server. Don't have a PLC handy? No problem, you can skip this
step or use one of the simulator drivers.

Connect to a database,

Database connectivity is at the heart of Ignition's most powerful features, like Transaction Groups and SQLTags Historian. If you have a SQL database, you can greatly increase Ignition's
capabilities by adding a connection to it. No database? You can come back to this step later or skip it entirely.

Launch the Ignition DesignertZ,

“This is where the magic happens. Create a project and add windows and transaction groups. Besides the usual status and control functionality, take advantage of advanced charting, tables and
reporting capabilities.

Launch a client. Or two. Or twenty.
Web-launched clients can be launched anywhere on your network from the pane! below. With Ignition, you don't have licensing restrictions to limit you.

Need more help? Visit the expanded Quick Start guide in the user manual.

Launch Projects @

Near the upper right corner, click 'Launch Designer'. This will open the following window after downloading the .jnlp file and executing it. Note the default
username/password is admin/password. Type those into the appropriate fields and click 'Login'.

Ignition‘f/ designer

by inductive automation

Username

Password

inducti
Copyright © 2003-2014 Inductive Automation All rights reserved. @ atomation

http://localhost:8088

This will bring you to a new Window where you can select an Ignition Project or create a new one. Create a new project by giving it a name and clicking
'Create New Project'.

) Open/Create Project

Ignition‘./

by inductive automation

Create New New Project Setup

| 7 New Project Project Name |MyDemoProject |\-r

Project Title | |

Open Recent Authentication Profile |defau|t |EJ|
7 Standard Demo Dashboard Default Database |MySQL EJ|
Default Tags Provider |defau|t EJ|
Project Template |B|ank EJ|

Description

| Create New Project
@ inductive
automation

Now you should be in designer. In the left hand side of the main window is a ‘Tag Browser' window. In it, expand 'All Providers -> MQTT Engine -> Edge
Nodes -> Sparkplug B Devices -> C Edge Node 1 -> Emulated Device'. You should see the following:

[XOX] Test - Ignition-Wess-MBP - Ignition Designer
File Edit View Project Component Alignment Shape Tools Help

BHraltREBWS O-b0 #a/Hu-sQaE LANS(Ob&[EIThwE = § =i
Project Browser OPC Browser g 7 X m
r = GCetting Started
@ Clobal 9 [<Defaut> Cle 5
= [Project
7 Properties # i Ignition OPC-UA Server fe)
s B Scripts A
é Transaction Groups =
Windows < W
Tag Browser a B X 24
ABE - & -vMé 44 o
T = ’ R]
=y MQTT Engine s New Main Window s New Popup Window L
i (1 Data Types Vo
=5 Edge Nodes
l—ﬁ] Sparkplug B Devices
-5 C Edge Node 1
L~) Emulated Device
4+ 3 Device Info
=& input
i,— % Device MetricO CLtiwTKDAQD String|
- Device Metricl O Boolean
= G output
i” % Device Metric2 16 Int2
- Device Metric3] Boolean
- @ My_Custom_Motor Custom_Motor|
3] Node Control
i] Node Info
i % DataSet Dataset [2R x 3C] DataSet
¥ S Node MetricO hello node String
i © Node Metricl] Boolean
% Node Metric2 13 Int2 [+
Property Editor a B X
i om o el R -
[Show on Designer Startup
4] | »
Welcome X
=+ (--) | --% 206 / 910 mb | [&

You will see the result of MQTT Engine seeing a new edge node and device connect to the MQTT Server and publish an NBIRTH and DBIRTH

message. As a result, MQTT Engine created the Ignition Tags shown above. These are also dynamically updated as the values change. You can also
write to the outputs after you Enable Device Writes from Ignition. This can be done by putting designer into read/write mode. Do so by clicking this button
in the menu to enable read/write mode:

Then you can change any of the values on the outputs here:

T e LSVILE ISU L L LuUIcar
——ﬂ.‘ output
- Device Metric2 | 12] Int2
+ % Device Metric3 | Boolean

You should see the output value change. By changing an output what happens is a DCMD MQTT message is constructed in MQTT Engine and published
to the MQTT Server. This message is then sent to the sample client where it is received. In a real scenario the device side code should write the the
actual output at this point and read back the value. In that case and in this emulated case, a DDATA message is constructed and published to the MQTT
server. ltis then received by MQTT Engine and where the state of the tag is updated.

This sample code also includes code that constructs the following message types:
® Sparkplug Templates which are converted to Ignition UDTs by MQTT Engine
® Datasets
® Sparkplug Properties which are converted to Ignition Tag Properties

© In order for these to show up in Ignition they must be known Ignition properties such as engUnit, engLow, engHigh, and Quality,

This example also utilizes aliases to prevent the need to send metric names on any message other than the initial NBIRTH and DBIRTH messages.

https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition

	B: Example C Client

