B: Example JavaScript Client

Prerequisites:

® |nstalling the Java Runtime Environment
® |nstalling Ignition
Installing the following MQTT Modules
© MQTT Distributor
= v3.1.0 or greater if using Ignition 7.9.X
© MQTT Engine
® v3.1.0 or greater if using Ignition 7.9.X
® Downloading the Sparkplug Sample Code onto a development system

Overview:
Sparkplug is an open source project developed by Cirrus Link Solutions which shows how devices or projects can be enabled to communicate with MQTT
Engine and Ignition. This example will show how data can be published via MQTT from an emulated device running on a development machine. In

addition, it will show how devices or projects can be controlled by writing to tags in Ignition. It will also show the caveats associated with establishing
/ending an MQTT session and ensuring that the tag values in Ignition are valid.

Example JavaScript Example:

This tutorial assumes:

Ignition is running and in active trial mode or using a purchased license.

MQTT Distributor is installed and running, using the default configuration, and in active trial mode or using a purchased license.

MQTT Engine is installed and running, using the default configuration, and in active trial mode or using a purchased license.
The Node.js JavaScript runtime is installed.

L]
L]
L]
L]
With the standalone Sparkplug examples downloaded onto your development machine, change into the following directory:
sparkplug_b/stand_alone_examples/js
If you are using a different MQTT Server, edit the following file to reflect your MQTT Server configuration (serverUrl, username, and password):

sparkplug_b/stand_alone_examples/js/example.js

For simplicity this example does not use or support TLS over MQTT without modifications.

Before running the application we need to install the sparkplug-client library using the Node Package Manager (npm). Issue the following command:

npm install sparkplug-client

Now start the application with the following command:

node sparkplug-example.js

At this point, the application will do the following:

® Connect to the MQTT server

® Publish a Edge Node Birth Certificate

® Publish a Device Birth Certificate

® Begin periodically reporting random data values to Ignition via MQTT Engine.

This can be verified via Ignition Designer. Using a Web Browser, browse to the Ignition Gateway on your machine. If it is running locally, that is: http://local
host:8088. You should see this:

https://docs.chariot.io/display/CLD/Java+Runtime+Environment
https://docs.chariot.io/display/CLD/Ignition
https://docs.chariot.io/display/CLD/MQTT+Modules
https://docs.chariot.io/display/CLD/Sparkplug+Sample+Code
https://nodejs.org/en/
http://localhost:8088/
http://localhost:8088/

ece Ignition Gateway %\ +

4 | () | localhost:8088/mainjweb/home?3 E1| ¢ Q search Tt B ¥+ @

USERMANUAL SUPPORT

Sign Out

Launch Designer
& CONFIGURE

. . . .
Trlal Verslon 1:56:43 We're glad you're test driving our software. Have fun. Activate Ignition

. Welcome to the Ignition Gateway

Congratulations, Ignition is installed and running!
Whether you need an OPC-UA server, a SQL datalogger, an HMI, or a full-blown SCADA or MES solution, Ignition can handle it. Here are a
few common steps to help get you started:
"Login totheconfiguration section.

The default username and password are: admin / password

Change the password or configure your own authentication profile in the Secur > Authentication section

Edconnecttoa device.

Connectivity is what Ignition is all about. Connect to a PLC on your network using the internal OPC-UA server, or a 3rd party OPC
server. Don't have a PLC handy? No problem, you can skip this step or use one of the simulator drivers.

Elconnect toa aatabase.
Database connectivity is at the heart of Ignition's most powerful features, like Transaction Groups and SQLTags Historian. If you have
a SQL database, you can greatly increase Ignition's capabilities by adding a connection to it. No database? You can come back to this
step later or skip it entirely.

EJLaunch the 1gnition Designercs.
This is where the magic happens. Create a project and add windows and transaction groups. Besides the usual status and control
functionality, take advantage of advanced charting, tables and reporting capabilities.

&l taunch a client. Or two. Or twenty.

Web-launched clients can be launched anywhere on your network from the panel below. With Ignition, you don't have licensing
restrictions to limit you.

. Launch Projects (2]

No Projects

Near the upper right corner, click 'Launch Designer'. This will open the following window after downloading the .jnlp file and executing it. Note the default
username/password is admin/password. Type those into the appropriate fields and click 'Login'.

Igniﬁon‘:/ designer

by inductive automation

to the accep : : Username
and c« S
accompanyin Password

| Login |

inductive
Copyright © 2003-2016 Inductive Automation All rights reserved. @ autrmation

This will bring you to a new Window where you can select an Ignition Project or create a new one. Create a new project by giving it a name and clicking
'Create New Project'.

@ Open/Create Project

Ignition‘./

by inductive automation

Create New New Project Setup

| New Project Project Name | |@

Project Title | |

Open Recent Authentication Profile |defau|t EJ|
A Test Default Database | |EJ|
Default Tags Provider |defau|t EJ|
Project Template | Blank EJ|

Description

Create New Project |

@ inductive
automation

Now you should be in designer. In the left hand side of the main window is a ‘'Tag Browser' window. In it, expand 'All Providers -> MQTT Engine -> Edge
Nodes -> Sparkplug Devices -> Javascript Edge Node -> Emulated Device'. You should see the following

[JoN) Test - Ignition-Tutorial-MBP - Ignition Designer
File Edit Yiew Project Component Alignment Shape Tools Help

BN AR EBGS OFP 0 £8EHE%Q0Q LANS|ebaE=T.hw
Project Browser o R X lz‘
e Clakal [<] = Getting Started =
E Project E 5
A Properties o
@Scripts [+] fay
Tag Browser o B X =
ABE - b -YMé 34 2
Tag Value Data Type 2
01 Tags A
1 ysterm .
£ client g New Mair] E
= S All Providers 2
(71 default
(] SECSGEM
=~ 5] MOQTT Engine
& Data Types
L@ Templatel
-) Edge Modes
- & Sparkplug Devices
450 Javascript Edge Mode
25 Emulated Device
£ Device Info
-5 Inputs
oo [Boolean
1 0 Int4
@2 1.23 Float4
=5 Outputs
'] Boalean
Q Intg
1.23 Floatd
&+) Properties
- my_boolean O Boolean
- mry_dataset Dataset [2R x 2(C] DatasSet
-y double 0.07 Float@
- my_float 0.01 Float4
B myint 1 Intd
- mry_lang 1,717,986,917,600 Int&
[+ "_\/ Templatelnstancel Templatel
- £ Mode Contral
i+ (2] Node Info
[(2] Engine Metrics
- (] Message Diagnostics
[« T [+]
() Welcome X
-1 | -5 | 104 f 310 mb | 8

You will see that MQTT Engine saw a new device attach to the MQTT Server and publish a Birth Certificate. As a result, MQTT Engine created the
Ignition Tags shown above. These are also dynamically updated as the values change. You can also write to the outputs after you Enable Device Writes
from Ignition. This can be done by putting designer into read/write mode.

Do so by clicking this button in the menu to enable read/write mode:

Component Align

|| B[-1

Then you can change any of the Tag values in the Outputs folder here:

https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition
https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition

J;r— () Device Info

- Inputs
+ oo %]
L1 0
b 2 1.23

- & Qutputs
J;f-' a0]
T 1 0

5 ® 2 123
T_[j Properties
T—' » ry_boolean W

You should see the Tag value change as well as the value of the corresponding Tag in the Inputs folder. In the Sparkplug example code the outputs are
virtually tied to the inputs. So, when modifying an output value, this causes an MQTT message to be sent from MQTT Engine, to the virtual device, which
receives the message, modifies the values, and then publishes a MQTT message back to MQTT Engine where the two values are updated.

Note: If you are not seeing the output and input values update to reflect the change you have made, make sure MQTT Engine is not configured to block
outbound device tag writes as described here.

https://docs.chariot.io/display/CLD/MQTT+Engine+Configuration

	B: Example JavaScript Client

