
B: Example Java Client
Prerequisites:

Installing the Java Runtime Environment
Installing Ignition
Installing the following MQTT Modules

MQTT Distributor
v3.1.0 or greater if using Ignition 7.9.X

MQTT Engine
v3.1.0 or greater if using Ignition 7.9.X

Downloading the   onto a development systemSparkplug Sample Code

 

Overview:

Sparkplug is an open source project and methodology developed by Cirrus Link Solutions which shows how devices or projects can be enabled to 
communicate with MQTT Engine and Ignition.  This example will show how data can be published via MQTT from an emulated device running on a 
development machine.  In addition, it will show how devices or projects can be controlled by writing to tags in Ignition.  It will also show the caveats 
associated with establishing/ending an MQTT session and ensuring that the tag values in Ignition are valid.

 

 Java Client:Example

This tutorial assumes:

Ignition is running and in active trial mode or using a purchased license.
MQTT Distributor is installed and running, using the default configuration, and in active trial mode or using a purchased license.
MQTT Engine is installed and running, using the default configuration, and in active trial mode or using a purchased license.
A   and   are installedJava Development Environment Maven

If you are using a different MQTT Server, edit the following file to reflect your MQTT Server configuration (serverUrl, username, and password):

sparkplug_b/stand_alone_examples/java/src/main/java/com/cirruslink/example/SparkplugExample.java

For simplicity this example does not use or support TLS over MQTT without modifications.

With the above steps completed, run the following commands to build the application: 

cd  /stand_alone_examples/java/sparkplug_a
 

mvn clean install 

 Now start the application with the following command:  

java -jar target/sparkplug_b_example-1.1.2-SNAPSHOT.jar

At this point, the application will start, connect to the MQTT server, publish a Edge Node Birth Certificate, publish a Device Birth Certificate, and begin 
periodically reporting random data values to Ignition via MQTT Engine.  This can be verified via Ignition Designer.  Using a Web Browser, browse to the 
Ignition Gateway on your Ignition Gateway.  If it is running on your development machine, that is:  .  You should see this:http://localhost:8088

https://docs.chariot.io/display/CLD/Java+Runtime+Environment
https://docs.chariot.io/display/CLD/Ignition
https://docs.chariot.io/display/CLD/MQTT+Modules
https://docs.chariot.io/display/CLD/Sparkplug+Sample+Code
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/download.cgi
http://localhost:8088/


 Near the upper right corner, click 'Launch Designer'.  This will open the following window after downloading the .jnlp file and executing it.  Note the default 
username/password is admin/password.  Type those into the appropriate fields and click 'Login'.



This will bring you to a new Window where you can select an Ignition Project or create a new one.  Create a new project by giving it a name and clicking 
'Create New Project'



Now you should be in designer.  In the left hand side of the main window is a 'Tag Browser' window.  In it, expand 'All Providers -> MQTT Engine -> Edge 
Nodes -> Sparkplug Devices -> Java Edge Node -> Emulated Device'.  You should see the following



You will see that MQTT Engine saw a new device attach to the MQTT Server and publish a Birth Certificate.  As a result, MQTT Engine created the 
Ignition Tags shown above.  These are also dynamically updated as the values change.  You can also write to the outputs after you Enable Device Writes 

.  This can be done by putting designer into read/write mode. from Ignition

Do so by clicking this button in the menu to enable read/write mode:

https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition
https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition


Then you can change any of the Tag values in the Outputs folder here:

You should see the Tag value change as well as the value of the corresponding Tag in the Inputs folder.  In the Sparkplug example code the outputs are 
virtually tied to the inputs.  So, when modifying an output value, this causes an MQTT message to be sent from MQTT Engine, to the virtual device, which 
receives the message, modifies the values, and then publishes a MQTT message back to MQTT Engine where the two values are updated. 

Note: If you are not seeing the output and input values update to reflect the change you have made, make sure MQTT Engine is not configured to block 
outbound device tag writes as described  .here

 

https://docs.chariot.io/display/CLD/MQTT+Engine+Configuration

	B: Example Java Client

