
IBAZ: Quickstart
Summary
IoT Bridge for Azure (IBAZ) is an application that connects to an MQTT Server and consumes MQTT Sparkplug messages from Edge devices.

These messages must be formatted as Sparkplug Templates which are defined in the . The Templates are used to create the Sparkplug Specification
Models in Azure Digital Twins automatically with no additional coding or configuration. Then multiple instances of these Templates generate the
Assets and start to populate with real time data sent on change only, thus significantly reducing the amount of data being sent to the cloud.

For further details on Azure Digital Twins terminology, refer to the . For further details on Eclipse Sparkplug, refer to Azure Digital Twins documentation
the . Eclipse Sparkplug resources

This quickstart document covers how IoT Bridge can be used to consume MQTT Sparkplug data and create and update Azure Digital Twins Asset
Models and Assets. This will show how to configure IoT Bridge as well as show how to use Inductive Automation's Ignition platform along with Cirrus
Link's MQTT modules to publish device data to an MQTT Server. This data will ultimately be consumed by IoT Bridge to create and update the Azure
Digital Twins components.

More information on Inductive Automation's Ignition platform can be found . Additional information on Cirrus Link's MQTT Transmission module here
can be found . here

Step 1: IBAZ Installation

Complete the IBAZ Installation process
This will install the Virtual machine, Disk, Network interface and Public IP address resources

Step 2: Create an Azure Digital Twins instance

If needed create following the Microsoft Set up an Azure Digital Twins instance and authentication (portal) instructions
Collect the Host name as this is used in the IBAZ: Configuration

Step 3: Configure the Azure Digital Twins instance

Assign the Azure Digital Twins Data Owner role to your Azure Active Directory app registration identity and an additional Azure user(s)
Add a system-managed identity to your instance

Step 4: Create an event Hubs Namespace

If needed create following the Microsoft Create an event hub using Azure portal instructions

Step 5: Create an Azure Data Explorer Cluster

If needed create following the Microsoft instructions Create an Azure Data Explorer cluster and database

Step 6: Configure the Azure Data Explorer Cluster

Configure the to add your Azure Digital Twins Instance with a Database Admin role database permissions
Add additional Viewer role(s) to be able to query data

Step 7: Configure the Azure Digital Twins instance data history connection

Setup a data history connection

Step 8: Create an Azure Active Directory App Registration

If needed create following the Microsoft instructions Create an app registration to use with Azure Digital Twins
Collect the client ID, tenant ID and Client secret Value as these are used in the IBAZ: Configuration

This tutorial will use the MQTT Distributor implementation however the IBAZ does work with any MQTT v3.1.1 compliant MQTT Server.

Ignition in conjunction with Cirrus Link's MQTT Transmission module converts Ignition User Defined Types (UDTs) to Sparkplug Templates.
This is done automatically by the MQTT Transmission module. So, much of this document will refer to UDTs rather than Sparkplug
Templates since that is what they are in Ignition.

https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf
https://docs.microsoft.com/en-us/azure/digital-twins/overview
https://sparkplug.eclipse.org/
https://inductiveautomation.com/ignition/
https://www.cirrus-link.com/mqtt-software-for-iiot-scada/#mqtt-3
https://docs.chariot.io/display/CLD80/IBAZ%3A+Installation
https://docs.microsoft.com/en-us/azure/digital-twins/how-to-set-up-instance-portal
https://docs.chariot.io/display/CLD80/IBAZ%3A+Configuration
https://docs.microsoft.com/en-us/azure/digital-twins/how-to-set-up-instance-portal#assign-the-role-using-azure-identity-management-iam
https://docs.microsoft.com/en-us/azure/digital-twins/how-to-route-with-managed-identity?tabs=portal#add-a-system-managed-identity-to-an-existing-instance
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-create
https://docs.microsoft.com/en-us/azure/data-explorer/create-cluster-database-portal
https://docs.microsoft.com/en-us/azure/data-explorer/manage-database-permissions
https://docs.microsoft.com/en-us/azure/digital-twins/how-to-use-data-history
https://docs.microsoft.com/en-us/azure/digital-twins/how-to-create-app-registration?tabs=portal
https://docs.chariot.io/display/CLD80/IBAZ%3A+Configuration

In our example below we have all the resources in the same Resource group:

Step 9: Install Ignition and MQTT Modules

For this setup, we'll install Inductive Automation's Ignition platform along with the MQTT Distributor (MQTT Server) and MQTT Transmission (Edge
device) modules from Cirrus Link.

Installation of Ignition is very straightforward following the instructions in the guide.Installing and Upgrading Ignition

With Ignition installed, the Cirrus Link modules must be installed as a plugin to Ignition. Follow the instructions in our guide.Module Installation

Step 10: IBAZ Configuration

Update your configuration properties in the IBAZ configuration file located on the VM at /opt/ibaz/conf/ibaz.properties. Instructions for accessing the
VM can be found here.

Follow our guide for details.IBAZ configuration

Now the IBAZ service can be restarted to pick up the new configuration. Do so by running the following command.

sudo systemctl restart ibaz

At this point, IBAZ should connect to MQTT Distributor and be ready to receive MQTT Sparkplug messages. Verify by running the following command.

tail -f /opt/ibaz/log/wrapper.log

With the default MQTT Distributor configuration use the following properties:

mqtt_server_url = tcp:// :1883youripaddress of installed Ignition instance

mqtt_username = admin

mqtt_password = changeme

https://docs.inductiveautomation.com/display/DOC81/Installing+and+Upgrading+Ignition
https://docs.chariot.io/display/CLD80/Module+Installation
https://docs.chariot.io/display/CLD80/IBAZ%3A+Virtual+Machine+Access+Instructions
https://docs.chariot.io/display/CLD80/IBAZ%3A+Configuration

After doing so, you should see something similar to what is shown below.

Note the last line is 'MQTT Client connected to ...'. and this indicates that we have successfully configured IBAZ and properly provisioned MQTT
Distributor.

Now we can configure our Ignition MQTT Transmission module to connect to the MQTT Distributor server in order to publish data into Azure. We will
also import some UDT Definitions and UDT Instances that will be mapped to Azure Models and Digital Twins.

Step 11: Import UDTs and tags

For this quick start, we have created a number of sample UDTs and associated tags that can be easily imported. Using the Ignition Designer, import
these UDTs and tags into the default Tag Browser.

IBAZ_quickstart_UDTs.json

IBAZ_quickstart_tags.json

Once imported, you can browse into each tag to see the structure of the UDT and UDT Instances.

https://docs.chariot.io/download/attachments/129204752/IBAZ_quickstart_UDTs.json?version=1&modificationDate=1663967000933&api=v2
https://docs.chariot.io/download/attachments/129204752/IBAZ_quickstart_tags.json?version=1&modificationDate=1663967000916&api=v2

Step 12: Edge Device Configuration

Now we can configure the MQTT Transmission module to connect to MQTT Distributor. From the left hand menu bar in Ignition, select MQTT
Transmission > Settings.

Select the Transmitters tab and edit the Default Transmitter by setting the following properties:

Tag Path = Azure Smart Factory
Convert UDTs = Unchecked
Publish UDT Definitions = Checked
Optimize UDTs = Checked

Refer to Inductive Automations documentation if you are unfamiliar with importing tags.Exporting and Importing Tags

https://docs.inductiveautomation.com/display/DOC81/Exporting+and+Importing+Tags

Once this configuration is saved, you can confirm you are connected by switching to the Servers tab and verifying that the Connected status shows 1
of 1

Step 13: Confirm connection with the Azure Digital Twins Explorer

Navigate to your Azure Digital Twins Explorer by clicking on the Overview for your Azure Digital twins and selecting the Open Azure Digital Twins
Explorer (preview) link at the top

This will display the Azure Digital Twins Explorer view:

Run Query as and you will see two digital twins created; one for the IBAZ instance and one for the connected MQTT SELECT * FROM digitaltwins
Client

From Ignition Designer, to publish the edge node tags to Azure refresh Transmission

Run Query as and also refresh your MODELS. SELECT * FROM digitaltwins Now you will see that that Digital Twins have been created for each of
your UDT Instances and an addition digital twin containing metrics for the edge node.

Refer to the document for details on digital twin propertiesIBAZ: Mappings and Constraints

https://docs.chariot.io/display/CLD80/Using+MQTT+Transmissions+%27Refresh%27+Mechanism
https://docs.chariot.io/display/CLD80/IBAZ%3A+Mappings+and+Constraints

You can drill into each Digital Twin by selecting the twin and verifying the associated data by checking the Twin Properties. From the Edge Device,
change the tag values and see that they are updated.

Step 14: Confirm data in database

Navigate to your Azure Data Cluster Explorer and select Databases from the left hand menu bar.

Click on the link for your database and select Query from the left hand menu bar:

You will need to Run Query each time to see refreshed data through the Azure Digital Twins Explorer UI.

If you looking to query data on a single digital twin, you can modify the query using the WHERE statement for example: SELECT * FROM
digitaltwins WHERE $dtId = 'Smart_Factory_1%2FFactory_Energy%2FLine_3%2FPaint_Booth'

You can now using the Azure Data Explorer tooling to view the data from each of the digital twins.query the data

Now the data is in the cloud, there are existing Microsoft documentation useful for processing this data for managing anomaly detection, active
monitoring and trending/reporting. The reference links are include below:

Anomaly detection

Multivariate Anomaly Detection in Azure Data Explorer

ADX contains native support for detecting anomalies over multiple time series by using the function series_decompose_ano
.malies()

Time series anomaly detection & forecasting

This article details time series anomaly detection and forecasting capabilities of KQL.
Active monitoring

Azure Data Explorer connector for Power Automate

Send notifications and alerts based on query results, such as when thresholds exceed certain limits.
Trending and reporting

Data received by Azure Digital Twins Explorer can take up to 5 minutes to be available in Azure Data Explorer

https://docs.microsoft.com/en-us/azure/data-explorer/web-query-data#run-queries
https://techcommunity.microsoft.com/t5/azure-data-explorer-blog/multivariate-anomaly-detection-in-azure-data-explorer/ba-p/3689616
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/series-decompose-anomaliesfunction
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/series-decompose-anomaliesfunction
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/anomaly-detection
https://learn.microsoft.com/en-us/azure/data-explorer/flow

Azure Data Explorer connector for Power Automate

Send regular, such as daily or weekly, reports containing tables and charts.
Azure Data Explorer data visualization

Data visualization and reporting is a critical step in the data analytics process. Azure Data Explorer supports many BI
services so you can use the one that best fits your scenario and budget.

https://learn.microsoft.com/en-us/azure/data-explorer/flow
https://learn.microsoft.com/en-us/azure/data-explorer/viz-overview

	IBAZ: Quickstart

