Create a Java Keystore (JKS) File

NOTE: The procedure below is only applicable when running pre-3.4.7 modules. Manually configuring MQTT Distributor to consume a Java Keystore is
supported and will work properly when running pre-3.4.7 modules, but it is no longer the recommended process for encrypting MQTT communication. If
possible, please upgrade to modules version 3.4.7 or higher and follow the default workflow to secure MQTT communication.

Whether you are using a certificate issued by a trusted CA (Certificate Authority) or a self-signed certificate, internally MQTT Distributor accesses these
certificate(s) via the Java KeyStore file that it is configured to use. This KeyStore must contain the public certificate, the private key, and possibly an
intermediate certificate if applicable.

Creating a Keystore using Keystore Explorer

There are many ways to create a Java KeyStore. In this example, we'll show how it can be done using KeyStore Explorer. It can run on Windows, OSX,
or any other OS that can run Java. It provides an easy to use graphical interface for creating and manipulating Java KeyStores. Keystore explorer can
create a keystore from existing keypair (i.e., certificates) or can generate a private keypair if desired. After installing KeyStore Explorer, open it and you
should see something similar to the following. It may ask you to modify some of your Java Security settings before starting. If so, follow the instructions it
provides.

[NON] KeyStore Explorer 5.1.1
= B | P RIH[E[@[d| @

KeyStore Explorer

Quick Start
|
- ey 1ol
Create a Open an Open the
new KeyStore existing KeyStore Default KeyStore
i Y = 0
Open the CA Examine a Show the
Certificates KeyStore Certificate Help Pages

No KeyStore Loaded

Using an Existing Keypair

Select 'Create a new KeyStore'. Select a 'JKS' as the type as shown below.

https://docs.chariot.io/pages/viewpage.action?pageId=66715655#SecureMQTTCommunication(SSL/TLS)-default-workflow
http://www.keystore-explorer.org/

@ New KeyStore Type

Select the type of the new KeyStore:
~JCEKS
O Jks
 PKCS #12
~BKS-V1
~ BKS
UBER

Pull the required components into the KeyStore starting with the public/private KeyPair. This is the public certificate and the private key that we originally
generated. Click the 'Import Key Pair' icon from the KeyStore Explorer menu (the icon with two keys and a blue downward arrow).

Untitied-1 ™ - Key:

A0 [R[E[E
Import Key Pair -

m Key Size

Select OpenSSL as the type and click OK:

O Import Key Pair Type

Select the type of key pair import required:
~ PKCS #12

~ PKCS #8

 PWK

© OpenssL

Cancel | (OKI

Browse to the key and certificate files as shown below and click import:

) Import OpenSSL Key Pair
Encrypted Private Key:
Decryption Password:

OpenSSL Private Key File: /home/ubuntu/mykey.key Browse Details

Certificate(s) File: ,’home/ubuntu/mycert.cert| Browse Details

Concel [iigGEEND

Now you will be asked to specify the alias. You can leave this as the default. It will reflect the Common Name that was specified during the CSR
generation and the CA:

O New Key Pair Entry Alias

Enter Alias: *.chariot.io (RapidSSL CA)

Cancel (KD

You will now be asked to specify a password for the KeyPair. At this point MQTT Distributor requires that the Key Pair passwords match the overall
KeyStore password. So, make sure you note this password because we'll need to use it as the overall KeyStore password as well. Note: Use of a Key
Pair password is a constraint of the JKS file and therefore a requirement in the configuration of TLS.

@ New Key Pair Entry Password

Enter New Password; eeeesscscesse

Confirm New Password: eeeeesceccecee

Cancel (OKI

At this point, you can save your KeyStore and specify a KeyStore password. Do so by clicking the save icon in the upper left menu:

P U @
== NHE

|Save|

T & | [E Entry Name

You will now be prompted for a password. Provide the same secure password you used for the public/private KeyPair earlier. Note: Use of a Key Pair
IKeyStore password is a constraint of the JKS file and therefore a requirement in the configuration of TLS.

@ Set KeyStore Password

Enter New Password: eeeeeeccccccce

Confirm New Password: eeeeececececcccce

Finally, give it a name and location on the filesystem and click Save:

[NON) Save KeyStore As

Save As: |chariot.jks

tmp B

Name ~ Date Modified

File Format: @ All Files u

New Folder Cancel _

Configuring MQTT Distributor to use a Keystore

Use your browser and login to your Central Gateway (Distributor). Under Config MQTT Distributor Settings page under the General Tab upload the
keystore file. Uncheck the box to Enable the plain TCP connection and check the box under TLS Settings to Enable the TLS port(s). Don't forget to enter
the Password in the box just above the Java KeyStore File portion.

In the MQTT Distributor Settings, change the configuration for TLS communication from TCP to SSL. Upload the keystore file created and enter the
password.

© & 10.1.10.97:8088/main/webiconfig/matidistribute o - @

4
Ignition'’

In the MQTT Distributor Settings pane change the configuration for TLS
communication from tcp to ssl. Upload the cert.jks file created above and enter the
password. Do the same at the MQTT Transmission & Engine Settings pages, at the
Servers tab. (See below.) Edit the Chariott SCADA server changing from

each. Do this for both the MQTT Transmission and MQTT Engine modules.

Enable TLS Enable TLS for the MQTT Server

SecureMQTTPart *00
TLS enabled MQTT Server port

ot Enable Secure Websocket connections for the MQTT Server

Websocket
- Secure 9443
™~ Port
S TLS enabled MQTT Server Websocket port
- Keystore secretpassword
~ Pi d
~ asswar Java keystore password
Java Keystore Browse.. cert.jks
. File

Java Keystore File to upload for SSL enabled MQTT

Show advanced properties

Export the Certificate Chain for Client-side Use (self-signed certs only)

If using self-signed certificates, the required CA certificates are not known to MQTT clients by default as they would be if the certificate was generated by a
real CA. This requires one to acquire and upload the CA certificates that make up the certificate chain (aka. "chain-of-trust"). The certificate chain can be

exported from an existing keystore (like the one created here) using the steps below. Return to the KeyStore Explorer application and generate the
necessary root.ca.pem file. Save this file in same location (by default) as your cert.jks file. Use this template below to upload this root.ca.pem file to
Transmission and Engine. (Password not required on these pages.)

http://root.ca
http://root.ca

L] L] cert.jks - KeyStore Explorer 5.4.2
LMY EIRFAISTE T8 1698 36 210 2HACT =10 180)

T | 6| B Enry Name Algarihm |KeySize |Certificate Expiry Last Modified
£ ® 10-1-10-97 (rootca) 2048 1/7/2021 4:54:12 PM PST _1/8/2020 4:57:11 Ph PST

o s on
I S 1 VT e Sl T EPTES

o0 e cert jks - KeyStore Explorer 5.4.2
J;iv‘q"}(iﬂ A A IES IR G

B : ¢ ’ T | @ | [E |Entry Name Agorithm | KeySize |Certificate Expiry Last Modified
nght Click on [__Q__QI_QQ and Export i 0 4 @ 10-1-10-97 (rootca) RSA 2048 1/7/2021 4:54:12 PM PST 1/8/2020 4:57:11 PM PST
— | © Jrootca o [RSA [2048 [1/7/2021 4:48:04 PM PST_[1/8/2020 4:51:32 PM PST
— i ~. View Details >
T # Cut %X
i T— " Copy %C
1} T L Export I Export Key Pair
Generate CSR
KeyStore Type: JKS, Size: 2 entries, Path: '/ Users support/root cert jks'] * Import CA Reply » Export Private Key
1 = Edit Certificate Chain » [Export Puhlic)gey’/
~# Sign > —
)’/’/
s’ Unlock o
Slmi[al+ [X[G]8 (Rt AW[=[0[G[A]G]:[@ “SetPassword
certjks ® ¥ Delete ’//’
{ [R | [[Entry Name Algorithm KeySize Certificate Explry Last Modified = Rename
1 W o ® 10-1-10-97 (roctca) RSA 2048 1/7/2021 4:54:12 PM PST 1/8/2020 4:57:11 PM PST /,/
W & e roowa RSA 2048 1/7/2021 4:48:04 PMPST 1/8/2020 4:51:32 PM PST _
T
[] Export Certificate Chain from entry 'rootca’ 7
-
' -
Export Length: € Head Only Entire Chain /’ i
| Export Format:) X.509 PKCS #7 PKI Path SPC - 1 2 entries, Path: 'fUsers/support/rootcert.jks'
3 PEM: ¢
1 Export File: [jUsers/support/root/rootea.pem Browse
corcel MG

Save this rootca.pem key file. This will be installed on both Engine and Transmission Modules to allow and connect securely via SSL protocol to your
Distributor (Ignition Server).

DI R ————r] -

ssl://localhost:8883

P— URL

—_— The URL of the MQTT Server to connect to. Should be of the form
T puegEE— tep://mydomain.com: 1883 or ssl://mydomain.com:8883
Sorvriat L . T TT—

The Serve Sethis MQTT Secve i associacd with

= rm——————_—— Under MQTT Engine & Transmission, Servers, Main subsection edit the URL values from
e B tcp://hostlPaddr:1883 to ssl://hostlPaddr:8883 (shown above). Then upload the rootca.pem file
you just created to both Transmission and Engine configuration pages, under the TLS subsection

(left and below). Password may not be required here in modules prior to v7.9.12

The password fo tis MQTT connection e by the MQTT Server foptons!

Rty passond for

Bromse.. e ke soRei

Garihcats rhes —
- _
Chamge

==l Chackths b 3 change th estig pass

Browse... No file selected.

e The asswin associated weth the certcate’ Certificate Files "
Files:
fo—
[y s——
Change .
o D) Check this box to change the existing password.
\ Password
The password associated with the certificate’s private key (optional)
Password

Re-type password for verification.

At this point, all MQTT clients can now connect over TLS enabled connections. Note the new port of 8883. If using a certificate signed by a publicly
trusted CA and the OS with the MQTT client supports that specific CA, the clients don't have to make any modifications to their list of trusted root
certificates. If using a self-signed certificate there are a couple options:

® The root CA cert can be added to the Operation System's list of trusted root certificates

© This means the application doesn't need to handle special cases (i.e. modifications to the Java Truststore)

® The client side application can be modified to load the root CA certificate to validate the server certificate against
© This doesn't require OS changes
Note if your certificate also requires an intermediate certificate, this must also be added to the MQTT client so the full chain of trust can be established.
Using the Certificate to Secure Communication with MQTT Engine or MQTT Transmission:

In MQTT Engine or Transmission, there may be a need to specify the TLS components for the client configuration. If using certificates signed by a trusted
CA, no additional configuration is required beyond changing the form of the URL. The form should be as follows:

® ssl://[sever_url]:8883

An example is here:

74 igrition - Ignition Gateway % | ==
tings?38 @ Q search 8 =
Overview . i
Backup/Restore MQTT Engine Settings
Licensing
Modules
Projects General Servers Namespaces
Redundancy
Gateway Settings
New MQTT Server

Gateway Network

Auditing Name. Ignition Chariot 10
Users, Roles The friendly name of this MQTT Server
Service Security
Security Zones VAL ssl://my_server.com:8883

The URL of this MQTT Server. Should be of the form tcp:/, in.com:1883 or ssl;, om: 3
Connections
Drivers istril v

| . e {MQTT Distributor g
ORI The type of MQTT Server to connect to
General admin
Username

Journal The username for this MQTT connection if required by the MQTT Server (optional)
Netification
On-Call Rosters
Schedules Password

The password for this MQTT connection if required by the MQTT Server (optional)
History
Realtime Password

Re-type password for verification.
Certificates L Browse.. Nofile selected.

N Certificates

Devices Files:
Settings

") show advanced properties

Servers

Quick Client
Create New MQTT Server

Settings

If the trusted CA you purchased your certificate from requires an intermediate certificate or if you created a self signed certificate, you will need
to specify the CA certificate chain in the configuration. If you received your certificate from a trusted CA and they require an intermediate
certificate, it will be provided by the CA. If you followed the tutorial above for a self-signed certificate and also created an intermediate CA, it
will be the file called 'ca-chain.cert.pem’. If you simply created a CA without an intermediate cert, it will be the public CA certificate. Once
you've identified the CA certificate chain based on these descriptions, copy it to a file called 'root.ca.pem' on your development system. Note
this filename change is important and required.

Upload the file via the configuration as shown here by clicking Save Changes:
TLS

Browse... Nofile selected.

-) Files:
Certificate Files C:\fakepath\root.ca.pem

http://root.ca

Once the settings are saved, the MQTT client associated with MQTT Engine or MQTT Transmission will connect using TLS.

Additional Resources

® Inductive Automation's Ignition download with free trial
o https://inductiveautomation.com/downloads/
® Azure Injector download with free trial
© https://inductiveautomation.com/downloads/third-party-modules
® Questions about this tutorial?
O Check out the Cirrus Link Forum: https://forum.cirrus-link.com/
O Contact support: support@cirrus-link.com
® Sales questions
© Email: sales@cirrus-link.com
© Phone: +1 (844) 924-7787
® About Cirrus Link
© https://www.cirrus-link.com/about-us/

https://inductiveautomation.com/downloads/
https://inductiveautomation.com/downloads/third-party-modules/8
https://forum.cirrus-link.com/
mailto:support@cirrus-link.com
mailto:sales@cirrus-link.com
https://www.cirrus-link.com/about-us/

	Create a Java Keystore (JKS) File

